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INTRODUCTION 
The main objective of this deliverable is to evaluate and exploit different modelling approaches 
to develop submodels at different scales and functional levels around the liver-heart axis for 
application in the four use cases in ARTEMIS. Within the past six months, based on publicly 
available large data sets, strategies for the development of machine learning submodels for 
disease course prediction have been tested and deep learning approaches were evaluated to 
improve model performance and calibration. To formalize hypothesis on mechanisms on 
progression of fibrosis in MASLD and the interaction with the heart, relevant intracellular models 
of key regulatory mechanisms in liver cells are selected that could impact the interaction with the 
heart, strategies for patient-specific parametrization of the models were tested and likewise 
approaches to assess the impact of therapeutic drugs were evaluated. To explore consequences 
in the complex interplay of functional units at different levels, up to blood biomarker and imaging 
signatures of patients, decisions on procedures for the establishment of spatio-temporal 
submodels of liver and heart tissue through extending the existing liver virtual twin by 
components that are used as clinical biomarkers for disease progression towards and beyond 
fibrosis were taken. Furthermore, an approach for setting up a core of virtual twin of the heart 
myocardium at microarchitectural level with view on fibrosis was proposed. Finally, the 
developments of submodels for hemodynamics and transport at the tissue level and 
hemodynamics and transport at the organ level as well as at the whole-body level coupling of the 
liver-heart axis was planned, and some components implemented. Jointly, these developments 
provide the basis to test the consequence of different mechanisms, as well as of therapeutic 
interventions and thus for the development of virtual twins, towards clinical decision support 
systems. 

 

1. Machine learning submodels for 
disease course prediction (MUV, BU)  

 
The goal of image processing is to facilitate the establishment of submodels to study processes 
leading from MAFLD to HCC. This includes the prediction of HCC by the detection of potentially 
malignant regions as well as the characterization of stages of the liver parenchyma during disease 
progression, including but not limited to: inflammation, fibrosis, cirrhosis, HCC. This will be 
performed utilizing methods based on machine learning and deep learning.  

The work performed by MUV over the past 
months focussed on a preexisting local cohort. 
The data consists of a time series for each 
involved patient of MRI scans, and some 
associated demographic data. When working 
with time series, images should be registered to 
consistently study the same regions of the 
organ of interest. Registration can be 
performed intra-patient or inter-patientwise. 
MUV evaluated an intra-patient approach and 

Figure 1: Result of ANTs registration on sagittal and coronal 
slices of liver MRI. Original and registered images 

overlapped. Yellow areas show coincidence of image, green 
and red indicate difference. 
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utilized VoxelMorph [1] and ANTs [2] 
registration, but had suboptimal results (Fig. 1). 
It was tried to use segmentation to support the 
registration, but the major morphological and 
parenchymal variability present in the liver, 
often due to the progression of chronic liver 
disease, renders the registration task 
challenging and arguably incoherent. As an 

alternative approach registration of the main hepatic vessels was exploited to facilitate the 
identification of regions, even in cases where there is a significant deformation of the organ. 
Currently, MUV is developing a model that is able to reliably segment the liver, which is 
challenging due to the size of the cohort, the different scanners in use and the the high 
heterogeneity of liver morphology, both at the inter and intra-patient level. The current approach 
relies on 3D-Unet [3] and/or nnU-net [4] architectures, which is trained with annotated 
(segmented) local images. Automatic pre-trained tools like TotalSegmentator [5] have been 
tested but the results were suboptimal (Fig. 2) and reduced the performance of the registration. 

In parallel to developing the image analysis methods, we started to explore means of connecting 
the deep learning models for extracting features and time series of features from patients with 
simulation models that capture biological mechanisms in the data in initial conversations between 
MUV and ULEI. The imaging data is anticipated to serve as evidence to generate and to verify 
hypotheses regarding disease progression. Current work is focussing on identifying disease 
characteristics that can be mapped to dynamics of MRI time series. Details on these developments 
are also reported in deliverable 3.1. 

BU explored a variety of ML techniques to develop submodels and to address two specific 
research questions about disease progression. These techniques can be categorised into 
supervised and unsupervised ones. Moreover, such techniques are not all distributed to enable 
federated learning (FL) because the investigated data is publicly available not requiring any 
privacy-preservation mechanisms like FL. Once the consortium data is made available in ARTEMIS 
to apply and/or develop distributed algorithms, the privacy requirements through FL will be 
addressed. In particular, in a first stage, BU will investigate the application of existing federated 
ML models to be built around Flower [7], such as Federated XGBoost [8], Flex-trees [9], Federated-
clustering [10], and Bi-clustering (FIST) [13] although these techniques are not adapted to 
longitudinal data as required in ARTEMIS. In a nutshell, BU will be looking at distributed ML 
techniques that can operate on multi-modal and longitudinal data (radiomics, clinical, and genomic 
data) to uncover deeper insights into fibrosis progression and applications in the other three use 
cases. 

To employ Supervised Learning techniques for understanding progression of liver steatosis and 
fibrosis BU carried out experiments on use case 1 regarding fibrosis progression in MAFLD 
patients using a publicly available dataset named “Advanced Non-alcoholic fatty liver dataset with 
clinical metadata and ultrasound images for Deep learning Models (BEHSOF)” [11]. It comprises 
113 samples belonging to patients from Taleghani Hospital (TAL) and Behbood Clinic (BEH) 
labelled on steatosis (12 with stage 0, 57 with stage 1, 36 with stage 2, and 8 with stage 3) and 
fibrosis stages (24 with F0, 78 with F1, and 11 with F2). Considering that ultrasound images are 
not yet publicly available, BU solely worked on clinical data including patients’ demographic 
features, blood test results, and Fibroscan outcomes.  

Using the abovementioned dataset, BU aimed to perceive which clinical features have the highest 
impact on the progression of liver steatosis and fibrosis to assess the development of the disease. 

Figure 2: Sagittal and coronal slice of liver MRI with the 
TotalSegmentator prediction (green) overlapped. 
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To this end, BU started by evaluating various ML classification techniques (Random Forest, 
Decision Tree, Gradient Boosting, XGBoost, and KNN) to classify steatosis and fibrosis stages. 
Random Forest classifier (RF) achieved the best results with an accuracy of 69.56% and a ROC-AUC 
score of 82.66%. According to the results presented in Table 1, steatosis stages 0 and 1 had the 
best classification performance with a precision score of 80% and 71%, and a recall score of 80% 
and 91%, respectively, while stages 2 and 3 had very low precision and recall scores, very likely 
due to the small size of the data related to such stages".  

Considering explainability of the algorithms, BU interpreted the classification results using the 
Local Interpretable Model-Agnostic Explanations (LIME) method [12] to highlight the most 
important features for each stage. Applying RF, the preliminary results showed that the stiffness 
level of the liver measured using FibroScan, CAP-Score measures, and the triglyceride level had 
the highest influence in predicting the steatosis stage. For a clearer insight about the key features 
triggering steatosis progression, BU applied both hierarchical clustering using Ward as a linkage 
method and bi-clustering techniques using the Frequent Itemset mining using Suffix-Trees (FIST) 
Bi-Clustering approach [13]. 

Table 1: Performance results of various ML models on steatosis classification 

Models Random 
Forest 

Decision 
Tree 

Gradient 
Boosting 

XGBoost KNN 

Metrics 

Accuracy 69.56% 47.82% 52% 60.86% 34.78% 

Avg Precision 62% 36% 49% 58% 35% 

Avg Recall 70% 48% 52% 61% 35% 

Avg F1-Score 65% 40% 50% 59% 34% 

ROC-AUC 82.66% 54.11% 71.93% 76.11% 52.39 

 

To employ unsupervised learning techniques for understanding fibrosis progression and related 
comorbidities in NASH (MASH) patients, preliminary experiments and tests were carried out by BU 
based on use case 1. Publicly available data from a study mirroring use case 1 was used. The study 
[14] was aimed at performing multivariate analysis to find risk factors associated with liver fibrosis 
progression. It is a multicentre retrospective cross-sectional study of 215 NASH (MASH) patients 
from Mexico, including demographic information (age, gender), key metabolic parameters 
(cholesterol, triglycerides, fasting glucose, AST, ALT), and histological assessments using the 
Kleiner scoring system for fibrosis (F0–F4) and NAFLD Activity Score (NAS). This enabled grouping 
patients by fibrosis severity (non-significant F0–F2 vs. significant F3–F4) and examining 
comorbidities (T2DM, hypertension, cardiovascular disease, metabolic syndrome).  

BU conducted experiments to address key research questions, identifying the clinical variables 
most influential in fibrosis progression and evaluating the extent to which the identified clusters 
correlate with fibrosis stages and related comorbidities. These experiments also explored 
methodological considerations, such as the impact of different classes of clustering algorithms 
and the effects of employing distributed, privacy-preserving federated adaptations for clustering 
medical data, including processes like aggregation, alignment, and optimisation for non-IID data 
distributions. 

The federated clustering experiments were performed using distributed hard K-means within the 
Flower framework. After PCA-based dimensionality reduction, the data was split among three 
clients (simulation) that performed local K-means clustering. A central server aligned clusters 
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using the Hungarian algorithm and aggregated local cluster centres weighted by client sample 
size over five federated rounds. Five final global clusters mapped back to original clinical variables, 
highlighting distinct NASH (MASH) patient subgroups, particularly in platelet counts, liver 
enzymes, and cholesterol levels, revealing patterns related to fibrosis progression. Five clusters 
were chosen based on the Kleiner scoring system of F0-F4. The cluster centres, mapped back to 
the original clinical variable space, revealed distinct subpopulations of the NASH (MASH) patients 
based on key medical parameters. Cluster 1 exhibited high platelet count, triglycerides, and 
cholesterol levels, indicating active metabolic dysregulation. Cluster 2 also showed elevated 
platelet count and lipid abnormalities but with comparatively lower blood glucose levels, 
suggesting a subgroup with significant but less severe metabolic disturbances. Cluster 3 had 
moderately high platelet count and cholesterol, representing patients with milder metabolic 
issues. Cluster 4 was characterised by elevated alkaline phosphatase and cholesterol, along with 
high blood glucose, likely corresponding to individuals at greater risk of liver dysfunction and 
glycaemic irregularities. Cluster 5 displayed extremely high liver enzyme levels (AST and ALT) and 
lower cholesterol, indicating advanced liver damage and unique clinical patterns. These profiles 
provide valuable insights into the heterogeneity of fibrosis progression in NASH (MASH) patients. 
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2. Deep learning for performance 
improvement and model calibration 
(ULEI, BU) 
 
ULEI has evaluated numerous deep-learning-based approaches for the approximation of the 
analytical solution of complex mathematical equations that are the building blocks of many 
established multiscale mechanistic tissue models developed by ULEI in close collaboration with 
INRIA and DKFZ. Compared to traditional analytical and heuristic modelling methods, the deep-
learning-based approach investigated by ULEI is fundamentally different, allowing for the 
learning and construction of reduced-order models which are faithful representations of the full, 
high-dimensional complex dynamics [1]. First, ULEI evaluated the conversion of the problem of 
solving differential equations using ANNs into an optimization problem by using a method for 
solving both ordinary differential equations (ODEs) and partial differential equations (PDEs) 
relying on the function approximation capabilities of feedforward neural networks [2]. In the last 
years, this has evolved into two types of approaches, respectively named data-constrained 
approaches [1] that use label data to predict the model and physics-constrained approaches [3] 
that do not include any label information, only utilizing initial and boundary physical conditions 
for constraints [4]. Moreover, physics-informed methods have been published that consider both 
types of constrained methods [5]. ULEI used Pytorch and TensorFlow to evaluate the suitability 
of data-constrained methods like multilayer NNs that can be regarded as approximation of higher-
order functions [6]. Additionally, recent research shows that data constraints can be combined 
with prior additional restrictions (physics constraints) to feed the training of the model as a part 
of the loss function [6]. One of the most influential works are Physics-Informed Neural Networks 
(PINNs) proposed in 2019 [4, 7]. For specific PDEs, ULEI utilized the DeepXDE library that 
implements the newly proposed residual- based adaptive refinement (RAR) method as an 
improvement of PINNs in terms of training efficiency [8]. In additional ongoing work, ULEI 
experimentally evaluated the Fourier Neural Operator (FNO) approach [9] and verified accuracy 
of FNO by error bounds approximation. 
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3. Intra cellular model of liver cells in 
interaction with the heart (DKFZ, ALU-
FR, INRIA, ULEI, UKHD) 
3.1 Patient subgroup specific parameterization of models 
Together with our clinical partners in the ARTEMIS network, we selected as patient subgroups for 
our mathematical modelling approaches, patients that showed rapid or slow progression of 
fibrosis and with or without a cardiac phenotype. To identify features that are informative for 
disease progression in patient subgroups, ULEI provided fresh-frozen liver tissue samples of 62 
patients with chronic liver disease (22 with steatosis, 18 with F1/F2 fibrosis, 22 with F3/F4 fibrosis). 
For the identification of changes in the protein abundance in liver tissue correlating with disease 
progression and thus constitute disease progression features, DKFZ employed a global 
proteomics approach using data independent acquisition (DIA) and identified 7932 proteins in the 
liver tissue of the 62 patients. The comparison of the global proteome of patients with steatosis 
and F1/F2 fibrosis yielded 106 proteins, which were significantly changed in their abundance. 
Likewise, the abundance of 96 proteins was changed in the comparison of the proteome of liver 
tissue from patients with steatosis and F3/F4 fibrosis. However, the overlap between both 
comparisons was small, suggesting that different mechanisms are responsible for the transition 
to more advance fibrotic states. To prepare for the assessment of dynamic processes, DKFZ 
shared existing proteome data on longitudinal liver tissue samples from a mouse model fed with 
a Western Diet (high sugar, rich fat) with ULEI. Using a machine learning algorithm that selects 
features with a strong relationship to steatosis, but a weak relationship to each other (MRMR – 
maximum relevance minimum redundancy), a panel of 8 proteins was identified that correlates 
with steatosis progression. This approach will be further developed exploring other AI-tools (i) to 
identify other features correlating with disease progression and additional mechanisms that 
contribute besides known mechanism to fibrosis progression, (ii) to elucidate the connection to 
alterations in the heart and (iii) to stratify patient subgroups.       

For the mathematical representation of known mechanisms that contribute to liver fibrosis, DKFZ 
and ALU-FR selected established intracellular dynamic models relevant for ARTEMIS (Fig. 3):  

 
Figure 3: Established workflow for patient-specific parameterization of mechanistic ordinary differential equation (ODE) 
models and selection of hepatocyte growth factor (HGF), transforming growth factor beta (TGF�) and interleukin 6 (IL-6) 

signal transduction models to assess the link of proliferation and metabolism, the impact of tissue remodelling and of 
inflammation on MASLD progression to fibrosis, cirrhosis and HCC as well as the communication with the heart as a basis 

for virtual twin models as clinical decision support systems (CDSS). 
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A critical factor for liver regeneration is hepatocyte growth factor (HGF) that induces hepatocyte 
proliferation and has protective functions [1]. Both processes could be altered during the 
progression of fibrosis and might have a major role for slow or fast fibrosis progression play a 
major role in regulating the speed of fibrosis progression. Therefore, DKFZ and ALU-FR selected 
a dynamic pathway model consisting of coupled ordinary differential equations (ODE) of HGF 
signal transduction in hepatocytes. The dynamic pathway model was developed using time- and 
dose-resolved data obtained for primary mouse hepatocytes that were either healthy or showed 
a steatotic phenotype. Quantitative proteomics analysis allowed the quantification of all relevant 
pathway components and thereby facilitated model calibration and parameter identifiability. The 
careful interrogation of the HGF signal transduction model revealed that the parameter of basal 
phosphorylation of the HGF receptor MET was key to explain the difference in phosphatidyl 
inositol (PI)3 kinase signal transduction observed in steatotic hepatocytes and thus help to 
identify a novel mechanism correlating with increasingly deregulated proliferation of 
hepatocytes. To transfer the mechanistic model to the human situation and to evaluate strategies 
for patient-specific model parametrization, DKFZ acquired time resolved data on HGF signal 
transduction in primary human hepatocytes (PHH) obtained from surgical resections and 
information on the abundance of pathway components in the PHH from individual patients by 
quantitative proteomics. Based on these data ALU-FR calibrated the mechanistic HGF-signal 
transduction model for PHH and established the basal MET phosphorylation rate as the key 
patient-specific model parameter that correlated with patient recovery after liver surgery. Taken 
together these studies suggested that basal phosphorylation of MET can be used as an indicator 
for liver fitness [2] and established a general strategy for the patient-specific parameterization of 
ODE-based mathematical models of signal transduction pathways. Furthermore, DKFZ and VHIR 
are investigating the impact of high glucose and fructose on disease progression and are sharing 
the data with ALU-FR to parameterize the ODE-based model of HGF signal transduction including 
regulation of the energy metabolism to integrate alterations in metabolism and to assess this 
aspect on the progression of liver fibrosis. 

Transforming growth factor beta (TGFbeta) is a main driver of the secretion of extracellular matrix 
(ECM) proteins such as collagens and thus has a key role in liver fibrosis [3]. In the liver TGFbeta is 
primarily produced by activated hepatic stellate cells and acts in an autocrine manner on hepatic 
stellate cells but also on hepatocytes to foster ECM remodelling. To resolve mechanisms that 
regulate TGFbeta-induced production of ECM proteins by hepatic stellate cells and thereby 
potentially drive fibrosis progression, DKFZ and ALU-FR built on their ODE-based TGFbeta signal 
transduction model in hepatocytes that established the three most relevant phosphoSMAD2, 
phosphoSMAD3 and SMAD4 trimeric complexes [4]. Based on time- and dose-resolved 
quantitative immunoblotting data and quantitative proteomics data obtained for the 
immortalized hepatic stellate cell line LX2 the model has been parametrized for TGFbeta-induced 
signal transduction including the induction of collagens in the hepatic stellate cell line. Preliminary 
results show that key features of the dynamic behaviour of TGFbeta signal transduction captured 
by the mechanistic model can be reproduced in primary hepatic stellate cells derived from 
patients.   

For the communication of alterations in the liver driving slow or fast fibrosis inflammatory 
processes could be critical [5]. A key inflammatory cytokine is interleukin 6 as it triggers acute 
phase responses and thus has broad effects. To interrogate the impact of IL-6 on hepatocytes and 
potential modulation through therapeutic drugs such as painkillers, ALU-FR and DKFZ used their 
previously published ODE-based IL-6 signal transduction model that revealed the importance of 
drug reapplication to improve responses to the JAK inhibitor Ruxolitinib [6] and focussed on early 
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inflammatory responses to IL-6 in hepatoma derived cells as well as in PHH. The mathematical 
modelling approach revealed that the common painkillers diclofenac and paracetamol dim the 
induction of acute phase response proteins but amplify expression of the iron metabolism 
regulator hepcidin. These results demonstrated the potential of the approach to provide a 
systems-wide view on complex interrelations and resolve mechanisms of action of therapeutically 
used drugs, which could provide means to establish promising intervention strategies to e.g. slow 
down fibrosis progression or prevent cardiac complications. 

 

3.2 Drug-specific influence on signalling dynamics and model 
output 

As described in 3.1, the ODE-based approach of DKFZ and ALU-FR can yield mechanistic insights 
on the impact of therapeutic drugs on the dynamics of signal transduction in cells. Furthermore, 
the dynamic pathway model of HGF signal transduction is extended to capture regulation of 
glucose metabolism and thus provides the basis to study the impact of the inhibitor of the sodium 
glucose transporter 2 (SGLT2) in hepatocytes. Specifically, DKFZ received from ULEI PHHs of 10 
patients with increasing degrees of steatosis. The time- and dose-resolved quantitative 
immunoblotting data revealed that in correlation with an increase in the degree of steatosis the 
extent of HGF-induced activation of AKT is diminished. AKT is a central mediator of PI3 kinase 
signal transduction and a key regulator impacting mTOR signal transduction linking signal 
transduction to the regulation of glucose metabolism. The data including proteomic 
quantification of the patient specific abundance of key signalling components is currently utilized 
by ALU-FR to establish an integrative mathematical model of HGF signal transduction and glucose 
metabolism to quantitatively assess the impact of SGLT2 and identify patient specific parameters. 
Furthermore, DKFZ confirmed the effect of the therapeutic drugs diclofenac and paracetamol on 
IL-6 signal transduction analysing PHH provided by UKHD and thus validated the approach to 
identify drug specific effects on the dynamics of signal transduction.   

To address the systems-wide impact of drugs and to resolve effects on the communication 
between the liver and heart during the progression of fibrosis, longitudinal plasma/serum samples 
are a suitable source. Therefore, to gain insights into the effects of drugs approved for fibrosis 
treatment, DKFZ and UKHD have planned longitudinal experiments to characterize the dynamics 
of proteomic alterations in liver and heart tissue as well as serum from steatotic mice that have 
been treated with SGLT2 inhibitors or were left untreated. This will provide insights into the 
dynamics of the communication between the liver affected by progressive fibrosis and the heart 
and will identify changes induced by drug administration and their relation to the dynamics of 
phenotypic changes in the heart and liver.  

 

3.3 Patient specific parametrization  

Key for patient-specific parameterization of the developed mathematical models is the robust 
D1.3_Record of dissemination and communication actions undertaken in the previous 12 months, 
and updated plansemi-automated workflow for quantitative global, phospho and serum/plasma 
proteomics established by DKFZ. To optimize and standardize the quantitative proteomics 
workflow, one of the most advanced liquid chromatography devices, a Vanquish Neo system has 
been purchased through ARTEMIS, and was successfully integrated into the DKFZ workflow. This 
allowed to further improve chromatographic conditions such as gradient length for superior 
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separation of human plasma/serum samples. Further, through titration experiments the ideal 
sample load (amount of plasma or serum) and injection volume thresholds were established. 
During these optimization steps, key metrices such as total protein identifications, peptide level 
resolution, and protein intensity reproducibility were rigorously evaluated, which together are 
critical steps for achieving high-resolution and reproducible quantification of patient-specific 
proteomes. To complement the proteome-wide studies in individual patients and to facilitate the 
quantification in changes in very low abundance proteins such as some inflammatory cytokines, a 
robust and reproducible workflow for antibody-based multiplexed arrays has been established by 
DKFZ. The aim is to determine patient-specific cytokine values, that can be used as input for the 
mathematical models developed in collaboration with ALU-FR and thereby enable patient-
specific parameterization and model predictions. 
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4. Spatio-temporal submodels of liver 
and heart tissue (INRIA-Drasdo; ULEI, 
ALU-FR, DKFZ, ICAN, UKHD, VHIR) 
 

4.1 Extending the existing liver virtual twin (L-VT) by components 
that are used as clinical biomarkers for disease progression 
towards and beyond fibrosis 

The virtual twin models are complex, requiring at tissue-scale the simultaneous representation of 
tissue microarchitecture in 3D space, flow and transport processes, deformation, regeneration 
and degeneration processes and coupling of cell-level processes to intracellular processes as well 
as of flow and transport at tissue microarchitectural level to whole organ and body scale. 
Moreover, the long duration of disease progression requires adequate modelling strategies. 
To ensure re-usability of the models in-line with FAIR principles, INRIA-Drasdo first thoroughly 
analysed the current main software tool TiSim. Given the high interconnectedness of individual 
algorithms inside TiSim originally thought to improve performance, it was difficult and time-
consuming to extend the code while guaranteeing its intelligibility. Therefore, instead of 
modifying TiSim, INRIA-Drasdo focussed on a novel software tool (CompuTiX) that has been 
designed as a community tool, so that the models can be used, modified and extended by other 
researchers. This required re-coding of all model elements established before in TiSim and hence 
significant more effort compared to previous tissue simulation tools of the group such as CellSys 
[1] or TiSim [2]. By common efforts CompuTiX was advanced to ~250 000 lines of code, and the 
center-based and deformable cell models were implemented with many functionalities such as 
cell growth, division, cell movement/migration, cell-cell interactions, interactions between cells 
and non-cellular objects etc. The deformable cell model triangulates the cell surface, and 
represents the cell surface and body by a system of semiflexible springs to reproduce the cells’ 
mechanical response on mechanical deformation or compression. Moreover, it permits to simulate 
the adhesion between a cell and objects in its environment (cells, vessels etc.). Moreover, 
CompuTiX permits to run simulations out of image-based segmentations, and, to reconstruct 3D 
tissue microarchitectures out of stained volume data sets. Moreover, non-cellular structures such 
as vessels can be triangulated and interact with cells. The progress of the tool benefits from 
synergies of several modelling developers. 
In parallel on a 2nd research strand, the liver disease model that combines many different cell 
types, has been further expanded to study disease progression from fatty liver disease (MASLD, 
MetALD) to advanced fibrosis. Given the high number of parameters, and the difficulty to access 
human tissue samples at this stage of the project, INRIA-Drasdo decided after numerous 
discussions with hepatologists at ULEI, ICAN and VHIR to focus on simulation of portal 
hypertension in different disease stages, and to implement flow and transport inside liver tissue 
microarchitectures (details see 5.1). This subject is considered promising by the clinical 
collaborators as it has less parameters and as the parameters have a higher chance to be 
determined. Moreover, model validation is easier than for the more complex disease progression 
models. 
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4.2 Setting up a core VT of the heart myocardium (My-VT) at 
microarchitectural level with view on fibrosis 

Attempts to extend the previous software tool TiSim to simulate myocardium could not be 
realized for reasons explained in the introduction to 5.4. For this reason, the implementation of 
heart cells had to be postponed. However, INRIA-Drasdo expects that the key step is to 
implement cell polarity within the deformable cell model (for which there is a blueprint in [3]), and 
couple this to a system of active springs.  
 

4.3 Setting up a My-VT of heart fibrosis 

Within this task INRIA-Drasdo developed a model for the secretion of collagen fibres or bundles, 
that can subsequently diffuse, adhere to each other, and interlink to form a collagen network, or 
digested by macrophages. So far, the individual bundles and collagen network have been tested 
towards there biomechanical response on compression and stretch, and compared to published 
references in order to calibrate the model parameters. In that model collagen fibres/bundles are 
mimicked as semi-flexible chains, realized by chains of beads linked by linear springs, whereby the 
chains partially resist to bending. The capillaries (including sinusoids) are mimicked by hollow 
triangulated tubes, which response on stretch or deformation are compared to published 
references. Equally, the response of cells within the framework of the deformable cell models on 
deformation is simulated and compared to published references. All these steps serve to calibrate 
the biomechanical parameters necessary for later upscaling and comparison to fibroscan or 
elastography measurements.  

 

4.4 Simple coupling of L-VT and My-VT 

In order to link liver and myocardium, the two organs need to be linked by transport of agents 
(molecules, cells) with the blood. This happens in task 5. 
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5. Hemodynamics & transport 
submodels (INRIA-Vignon, INRIA-
Drasdo, ULEI, JUH, AP-HP, DKFZ) 
 

5.1 Hemodynamics & transport at tissue level (HeTran-TL) 

A key component to simulate portal hypertension as well as the communication between liver and 
heart is the simulation of hemodynamics and transport in tissue microarchitectures.  

For the development of a hemodynamics & transport at tissue level (HeTran-TL) model, within the 
new modular code ComputiX (see 4. Above), blood flow in explicit blood vessel networks has been 
implemented by INRIA-Drasdo and INRIA-Vignon with a Poiseuille-like model. A 1D-0D (spatial 
compartment)-1D reduction from the 3D models has been devised for transport of molecules 
respectively in the blood network, hepatocytes and bile canaliculi network, which will be 
implemented in the same code. Transport can also be of cells (e.g. immune cells) in the vessels and 
extravascular space. Depending on the particular molecule considered (e.g. TGF-b, provided by 
DKFZ), cells and ECM can serve both as sources or sinks. The model is being built in order to 
accommodate the different tissue architectures or input/output flow and transport conditions 
observed during disease progression (in particular the disorganization during cirrhosis) or due to 
treatment (WP3, WP6). This will depend on the tissue architectures provided by WP3.4.  

  

Figure 4: Elements for modeling at microscale. (A) Each sinusoid is approximated as a pipe. The sinusoidal network is a 
network of pipes (B). (C) The viscosity of the blood depends for small vessel radii of the radius. For very small radii, it 
increases. (D) It may be possible that the blood plasma partially passes through the Disse space hence increasing the 

effective radius, and, in case of large pressure, that the sinusoidal endothelial vessel wall may be dilated to permit a higher 
flow (E). In case part of the flow passes the space of Disse, an overload of the space of Disse by cells (e.g. hepatic stellate 

cells) or collagen (e.g. collagen I) as well as large or proliferating hepatocytes, the latter not respecting the sinusoidal 
alignment (Hoehme et. al., PNAS 2010) could reduce the flow able to pass a sinusoid and hence increase the flow 

resistance. At the level of the entire sinusoidal network any sparsening could be expected to increase the tissue flow 
resistance (not shown). 
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Computing portal hypertension from non-invasive measurement has been identified by clinicians 
as an interesting and important contribution to the clinics. INRIA-Drasdo talked to experts inside 
and outside ARTEMIS and currently explore published references to establish the different 
possible causes discussed for hypertension in order to develop and implement virtual twins for 
this application. At microarchitectural level, changes of the sinusoidal radius, the fenestration, 
vessel stiffness or compression of vessels by hepatocytes containing lipid vesicles are among the 
discussed origins of increased flow resistance (Fig. 4). 

 

5.2 Hemodynamics and transport at the organ level (HeTran-OL) 

An upscaling of the HeTran-TL model will lead to an organ level (HeTran-OL) model, distinguishing 
right and left livers or inhomogeneities within segments, so that the histological scale can be 
related to the regional organ-level perfusion imaging performed in MRI or CT (WP2, T3.1). This 
part will be performed by INRIA-Drasdo and INRIA-Vignon at a later stage of development of 
HeTran-TL model. To model surgical interventions such as TIPS or transplantation, 3D CFD 
(computational fluid dynamics) hemodynamics modeling of the main entering and exiting liver 
vessels, and the TIPS has been started by INRIA-Vignon based on intensive discussions with JUH 
and AP-HP (Fig. 5).  

It is planned that a variety of shapes, insertion locations, 
sizes and physiological conditions will be considered, first 
based on the recommendations of the use case 3 clinical 
partners JUH and AP-HP La Pitié and Paul Brousse. This is 
essential to then build corresponding reduced models of 
hemodynamics. The reduced model will be constructed 
such that parametric studies and optimization can be 
performed (T6.1.3). 

Regarding transplantation, an important clinical question is 
whether to ligate natural shunts or not. This necessitates 
to perform 3D and reduction model steps as for the TIPS, 

with the difficulty of being able to segment them from imaging data.  

Finally, 3D transport of molecules from the different liver inlets will be modelled later as passive 
tracers, to know their proportion going into the right vs left liver, or shunted by the TIPS: this will 
assess the importance of taking 3D geometry into account versus staying with a reduced model 
for distribution questions. 
 

5.3 Hemodynamics & transport/signalling at whole body level for 
liver-heart coupling (HeTran-BL) 

 
The baseline whole-body hemodynamics and transport model, which includes the liver and the 
heart, is currently being established by INRIA-Vignon in the ERC project MoDeLLiver [1]. A priori, 
only dynamic models (coupled ODEs) are necessary in ARTEMIs. Regarding the heart chambers, 
based on discussions with the clinical partners (JUH, AP-HP La Pitié, AP-HP Paul-Brousse), the 
one-fibre model [2, 3], the one-fibre model has been selected in order to model cardiomyopathy 
due to cirrhosis development or occurring after TIPS/transplantation.  

Figure 5: Preliminary results of liver vessel 
geometry with a TIPS and the corresponding 

3D CFD simulation 



D5.1 
 

18 
This document is a deliverable of the ARTEMIs project. The ARTEMIs Project is funded by the European Union  

within the Horizon Europe program under grant agreement No 101136299.  

      

Regarding the liver, it is planned that the baseline model will be 
modified to consider the HeTran-OL model. First, the overall 
model will be adapted to reproduce hemodynamics at different 
stages of cirrhosis development. Then the TIPS and 
transplantation procedures will be modelled, and parameters 
varied to see if we can represent the typically encountered 
behaviours short term after the procedure. For longer term 
behaviours, other effects (e.g. remodelling of the organ) might 
have to be added to the model. Transport of soluble factors 
from cells or drugs (T5.3) will be included as they act on the 
vascular system of different organs or tissue heart structure, or 
as indicated as a priori important to model by the clinical 
partners (e.g. shunting of DAMPs, PAMPs from the liver). 
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3.  CONCLUSION 
In this past six months, the components to be first implemented in the different models have been 
identified based on first exchanges between modelers and clinical partners. Preliminary results 
for the first steps have been obtained. Work in the area of image analysis focussed on robust 
segmentation of the liver in MRI data of severely disease patients, addressing extensive variability 
in texture and shape of anatomical structures and several deep learning approaches were 
evaluated to improve the performance. Furthermore, a pipeline for quantitative global 
proteomics was successfully employed to analyse differentially expressed proteins in early and 
advanced liver fibrosis, and strategies were implemented to identify with AI-based approaches 
features correlating with disease progression, which will provide a systems-wide view on disease 
promoting mechanisms. For the in-depth characterization of known mechanisms contributing to 
liver steatosis, fibrosis and cancer, established mechanistic models for HGF (a key regulator of 
hepatocyte proliferation and protection), IL-6 (a central inflammatory cytokine), and TGFbeta (a 
main mediator of fibrosis) signal transduction were selected and adapted to the human situation 
or specific cell types. Strategies were established that allowed personalized parameterization of 
these mechanistic models and to evaluated the impact of therapeutic drugs. To establish spatio-
temporal models to assess impacts at the tissue scale the decision was taken to utilize the novel 
software tool (CompuTiX) that has been designed as a community tool and to initially focus 
computing portal hypertension from non-invasive measurement for submodel development. To 
address the organ level interactions, 3D CFD (computational fluid dynamics) hemodynamics 

Figure 6: Example of pressure-volume 
loops of the left ventricle from the one-
fiber model, with varying wall thickness 
to be able to model cardiomyopathy [4]  
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modelling of the main entering and exiting liver vessels, and the TIPS is proposed, with the aim to 
model surgical interventions such as TIPS or transplantation. With these submodel developments 
an important basis has been laid to address the progression of MASLD to fibrosis and HCC and the 
communication with the heart and advance the establishment of virtual twins towards clinical 
decision support systems. 

Risks and challenges: 

At this early stage of the network patient data from the clinical partners could not yet be shared 
with the modelling partners and therefore in this establishment phase, publicly available data has 
been extensively used. However, it is evident that there is a need for more representative 
datasets, ideally stage balanced to gain better insight into the performance of ML algorithms.  

Another risk is that the actual patient data acquired during the project will differ more 
significantly than expected from the preliminary and test data used to prepare data analysis and 
modelling efforts thus leading to unexpected additional challenges and development 
requirements.  

Following several exchanges between modelers and clinicians to define the retrospective data 
collection for each use case, it is challenging to obtain the relevant (type and quality) data to 
construct virtual human twins (WP6) and identify the different liver-heart cross-talk mechanisms. 
Additional model components or extra data analysis might be need to relate the measured data 
to the models, and prospective studies are of importance. 

For the personalized parameterization of the mechanistic models, high-quality quantitative data 
is essential. Previously established proteome data, if available, could be helpful for initial 
orientation, but it will be essential that patient samples generated according to SOPs can be 
analysed with the proteomics workflows established by DKFZ. Furthermore, since disease 
progression in the liver and communication to the heart are dynamic processes, it is of importance 
to perform measurements with longitudinally collected high-quality serum or plasma samples. A 
challenge for plasma/serum proteomics is hemolysis. For a reliable proteomics analysis only 
serum/plasma samples that were processed within two hours after blood draw are suitable, which 
frequently is not the case for retrospectively collected samples available through biobanks. To 
ensure the generation of high-quality proteomics data from tissue and plasma/serum samples for 
the mathematical modelling approaches in ARTEMIS, prospective collections of samples according 
to SOPs would be of great benefit. These challenges are currently addressed in discussion rounds 
with the modelling partners and clinical partners and SOPs are shared. For the hemodynamics and 
transport models, retrospective data will likely not be enough to perform and validate patient-
specific simulations: prospective studies might be necessary. 

 

4.  FUTURE WORK 
The goal of the segmentation from MUV is to be able to isolate the liver from the image. This 
would facilitate future models (such as encoders) to learn relevant features that might later be 
linked to mechanistic models. On the other hand, segmentation of the region of interest is a 
crucial step for the application of certain machine learning techniques, such as radiomics (that has 
shown to provide relevant results related tasks [6]). Further, the associated demographic and 
clinical information could be used in combination with the imaging data to provide a better 
prediction on outcomes or analysis of the images. Ultimately, the goal is to link demographic, 
clinical and imagenological information as input for a more accurate prediction on disease 
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development. The models would be tested on cohorts from different sites across Europe, 
providing a more robust and reliable model due to the diversity in patients.  

Regarding the mechanistic modelling, tissue and plasma samples provided of longitudinal 
experiments performed by UKHD and VIHR with animal models will be analyzed by DKFZ utilizing 
global and phosphoproteomics workflows. The dynamics of changes in phosphorylation sites, 
alterations in the abundance of proteins and the link to changes of factors in the serum will be 
established by ULEI and shared with ALU-FR to further calibrate the selected mechanistic models, 
to facilitate the integration of the models to e.g. explain fast versus slow fibrosis progression, to 
consider in vivo relevant input concentrations and to potentially select further mechanistic 
models a relevant to gain insights into the communication of the liver-heart axis during MASLD 
progression. In collaboration with WP6 the multimodal data will be integrated by ULEI and AI-
based approaches will be used to determine mechanisms correlating with disease progression in 
the liver and to identify factors essential for the communication with the heart and vice versa how 
disease of the heart might impact the liver.  

Regarding the hemodynamics & transport models, in the next phase INRIA-Vignon will implement 
the different submodel components as described above. To prepare the inclusion of outputs from 
WP3 and the beginning of WP6, regular discussions will be put in place between the image 
analysis, data analysis and modelling partners, as well as between these and clinical partners for 
each use case. 

Tissue microarchitecture: still a major bottle neck is the availability of tissue reconstructions from 
human tissue material, which requires a safe, legal framework as well as a functioning workflow 
from taking the samples, conserving them, transporting them to the localisation where labelling 
and imaging is being done, transferring the images to the person doing the image 
reconstruction/analysis ULEI and finally transfer of the results to the modelling lab (INRIA-
Drasdo). As establishment of such a workflow is time-consuming we are currently thinking of 
generating artificial tissue samples by developing a liver lobule generator that permits to reflect 
the pathologies relevant to this project. Moreover, we are aiming at mappings from non-invasive 
measurement modalities to histological parameters that determine tissue flow resistance.  

Disease progression modelling: The models of disease progression need to reflect the parameters 
that are identified as patient specific by mechanistic modelling by DKFZ and ALU-FR, and that are 
important in clinics to calculate scores that are used to characterize the state of patients’ livers. 
An example for a clinical parameter is the Fib4-score. For this, the transaminases concentrations 
and platelet counts need to be represented in the model generated by INRIA-Drasdo. One key 
step underway now is to integrate these components, which, for the Fib4-score should be done 
by expanding the ammonia detoxification model from ref. (Ghallab et. al., J. Hepat. 2016). 
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